|
说明 2022-09-03 10:09:14
|
|
资料 2022-09-03 10:09:14
|
|
1-1 个性化推荐算法综述.mp4
|
2022-09-03 10:09:14 |
73.5 MB |
|
|
1-2 个性化召回算法综述.mp4
|
2022-09-03 10:09:14 |
46.49 MB |
|
|
2-1 LFM算法综述.mp4
|
2022-09-03 10:09:14 |
54.35 MB |
|
|
2-2 LFM算法的理论基础与公式推导.mp4
|
2022-09-03 10:09:14 |
78.02 MB |
|
|
2-3 基础工具函数的代码书写.mp4
|
2022-09-03 10:09:14 |
82.55 MB |
|
|
2-4 LFM算法训练数据抽取.mp4
|
2022-09-03 10:09:14 |
85.8 MB |
|
|
2-5 LFM模型训练.mp4
|
2022-09-03 10:09:14 |
106.2 MB |
|
|
2-6 基于LFM的用户个性化推荐与推荐结果分析.mp4
|
2022-09-03 10:09:14 |
78.06 MB |
|
|
3-1 personal rank算法的背景与物理意义.mp4
|
2022-09-03 10:09:14 |
71.32 MB |
|
|
3-2 personal rank 算法的数学公式推导.mp4
|
2022-09-03 10:09:14 |
49.45 MB |
|
|
3-3 代码构建用户物品二分图.mp4
|
2022-09-03 10:09:14 |
62.3 MB |
|
|
3-4 代码实战personal rank算法的基础版本.mp4
|
2022-09-03 10:09:14 |
127.74 MB |
|
|
3-5 代码实战personal rank算法矩阵版本上.mp4
|
2022-09-03 10:09:14 |
102.46 MB |
|
|
3-6 代码实战personal rank算法的矩阵版本下 -1.mp4
|
2022-09-03 10:09:14 |
14.06 MB |
|
|
3-7 代码实战personal rank算法的矩阵版本下-2.mp4
|
2022-09-03 10:09:14 |
64.18 MB |
|
|
4-1 item2vec算法的背景与物理意义.mp4
|
2022-09-03 10:09:14 |
81.24 MB |
|
|
4-2 item2vec依赖模型word2vec之cbow数学原理介绍.mp4
|
2022-09-03 10:09:14 |
88.1 MB |
|
|
4-3 item2vec依赖模型word2vec之skip gram数学原理介绍.mp4
|
2022-09-03 10:09:14 |
51.23 MB |
|
|
4-4 代码生成item2vec模型所需训练数据.mp4
|
2022-09-03 10:09:14 |
60.19 MB |
|
|
4-5 word2vec运行参数介绍与item embedding.mp4
|
2022-09-03 10:09:14 |
89.43 MB |
|
|
4-6 基于item bedding产出物品相似度矩阵与item2vec推荐流程梳理.mp4
|
2022-09-03 10:09:14 |
94.68 MB |
|
|
5-1 content based算法理论知识介绍.mp4
|
2022-09-03 10:09:14 |
59.45 MB |
|
|
5-2 content based算法代码实战之工具函数的书写.mp4
|
2022-09-03 10:09:14 |
106.07 MB |
|
|
5-3 用户刻画与基于内容推荐的代码实战。.mp4
|
2022-09-03 10:09:14 |
106.9 MB |
|
|
6-1 个性化召回算法总结与评估方法的介绍。.mp4
|
2022-09-03 10:09:14 |
67.81 MB |
|
|
7-1 学习排序综述.mp4
|
2022-09-03 10:09:14 |
75.51 MB |
|
|
8-1 逻辑回归模型的背景知识介绍.mp4
|
2022-09-03 10:09:14 |
78.52 MB |
|
|
8-10 LR模型训练之组合特征介绍.mp4
|
2022-09-03 10:09:14 |
92.99 MB |
|
|
8-2 逻辑回归模型的数学原理.mp4
|
2022-09-03 10:09:14 |
72.45 MB |
|
|
8-3 样本选择与特征选择相关知识.mp4
|
2022-09-03 10:09:14 |
58.31 MB |
|
|
8-4 代码实战LR之样本选择.mp4
|
2022-09-03 10:09:14 |
65.76 MB |
|
|
8-5 代码实战LR之离散特征处理.mp4
|
2022-09-03 10:09:14 |
111.17 MB |
|
|
8-6 代码实战LR之连续特征处理.mp4
|
2022-09-03 10:09:14 |
84.88 MB |
|
|
8-7 LR模型的训练.mp4
|
2022-09-03 10:09:14 |
86.87 MB |
|
|
8-8 LR模型在测试数据集上表现-上.mp4
|
2022-09-03 10:09:14 |
109.52 MB |
|
|
8-9 LR模型在测试数据集上表现-下.mp4
|
2022-09-03 10:09:14 |
115.29 MB |
|
|
9-1 背景知识介绍之决策树.mp4
|
2022-09-03 10:09:14 |
83.49 MB |
|
|
9-2 梯度提升树的数学原理与构建流程.mp4
|
2022-09-03 10:09:14 |
83.79 MB |
|
|
9-3 xgboost数学原理介绍.mp4
|
2022-09-03 10:09:14 |
62.54 MB |
|
|
9-4 gbdt与LR混合模型网络介绍.mp4
|
2022-09-03 10:09:14 |
41.3 MB |
|
|
9-5 代码训练gbdt模型.mp4
|
2022-09-03 10:09:14 |
88.05 MB |
|
|
9-6 gbdt模型最优参数选择.mp4
|
2022-09-03 10:09:14 |
57.57 MB |
|
|
9-7 代码训练gbdt与LR混合模型.mp4
|
2022-09-03 10:09:14 |
106.88 MB |
|
|
9-8 模型在测试数据集表现 上.mp4
|
2022-09-03 10:09:14 |
130.42 MB |
|
|
9-9 模型在测试数据集表现 下.mp4
|
2022-09-03 10:09:14 |
45.22 MB |
|